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In this paper a variational formulation of the three-dimensional Schrödinger–

Poisson system is proposed with the aim of solving the open problem of the

asymptotic behaviour in time of the solutions in the case of attractive Coulomb

forces. A dispersive equation relating density and linear moment dispersions is

found. Optimal bounds for the kinetic energy are obtained which leads to study

the asymptotic behaviour in time for the solutions in the attractive case with

positive energy. The description of the asymptotic behaviour properties of the

solutions such as a the existence of breathing mode solution, i.e. a changing size

oscillatory wave function, in the case of attractive potential with negative kinetic

energy are also given. A study of the stability of stationary solutions is proposed

using a Liapunov functional and also starting from a perturbation of an associ-

ated time-independent solution of the Schrödinger–Poisson equation (linear

stability).

KEY WORDS: Schrödinger–Poisson system; asymptotic behaviour; Coulomb

forces.

1. INTRODUCTION

Recent advances in technology design, in particular the progressive ten-

dency to fabricate semiconductor devices with extremely small sizes, have

obliged to account for quantum-mechanical and numerical methods in

order to describe quantum effects such as tunneling, size quantization or



quantum interference. In this direction, Schrödinger–Poisson’s system

constitutes, since the early eighties, a quite extended mathematical frame-

work to understand and analyze mathematical aspects which may prove

relevant for the study of semiconductor heterostructures modeling. We

refer to ref. 20 for a general setting of this and related models. The attrac-

tive case, which is our major concern in this paper, is also of interest in

applications related to quantum gravity (6, 11, 26) in the limit of very heavy

particles (known as the Schrödinger–Newton system in this context). In

subsequent studies the stationary solutions of non-linear SP system have

been stressed, either from a numerical, (28) analytical (22) or variational (12)

viewpoint. For instance, (27) proves that a quantum heavy particle subjected

to its own gravitational field becomes a black-hole as the particle mass

approaches Planck’s scale. Also, the attractive case is important in the

quantum evolution of electrons in an ionic crystal (polaron) in the limit of

high frequency optical phonons. (1)

The single particle Schrödinger–Poisson system governs the temporal

evolution of the pure quantum-mechanical state wave function k(x, t),
which describes the state of a non- relativistic quantum particle in the

coordinate space under the action of the self-consistent potential V origin-

ated by its own charge. In the attractive case, the Schrödinger–Poisson

system describes the propagation in time of an electron in a polar crystal (a

polaron), in the approximation for which the lattice vibrations or phonon

cloud behave classically (strong coupling or mean field limit). The Schrö-

dinger equation in R3×(0,.) can be written as follows

i(
“k

“t
=−

(
2

2m
Dxk+Vk, lim

|x|Q.
k=0, (1)

k(x, 0)=j(x) (2)

when associated with a single particle system in vacuum, where ( denotes

Planck’s constant and m the mass of the particle. To determine V we

couple this system to the Poisson equation

DxV=−c |k|2, lim
|x|Q.

V=0, (3)

where |k(x, t)|2 is the expected particle density for a pure quantum state in

the position space R3
x at time t and c=+1 or c=−1 depending on the

repulsive or attractive character of the Coulomb force, respectively. The

self-consistent potential V, solution of (3), can be explicitly written as

V(x, t)=
c

4p
F
R
3

|k(xŒ, t)|2

|x−xŒ|
dxŒ. (4)

In this paper we are concerned with the study of the behaviour in time
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of the wave function k, solution to the 3-D Schrödinger–Poisson system

(SPS). Actually, we are interested in giving an insight on the quantum

mechanical dynamics of a single particle in vacuum or a polar crystal (the

polaron problem), and elucidating about its qualitative behaviour depend-

ing on the repulsive or attractive sign of the self-consistent Poisson poten-

tial, which to the best of our knowledge has been by no means completely

well-understood through the literature and it constitutes an open problem

in the attractive case until present. In this direction it is remarkable the

contribution by Choquard to the quantum attractive modeling, discussed in

ref. 16 by E. H. Lieb, where a description of an electron trapped in its own

hole is given through an approximation to the Hartree–Fock theory for a

one-component plasma: In particular, he proves existence and uniqueness

of a minimizing solution to the energy functional associated with a Schrö-

dinger–Poisson problem. This minimizing solution is proved to satisfy a

stationary Schrödinger–Poisson equation. Related to the asymptotic beha-

viour in time of the solutions to the SPS under repulsive potential, let us

mention the work of R. Illner, P. F. Zweifel and H. Lange (10) where it is

proved that the wave function converges in the repulsive case to zero in Lp

norm, p > 2, for large times when the initial data is in H2(R3). Also in the

repulsive case, R. T. Glassey (7) showed that the particle density cannot be

localized for large times inside a ball of any arbitrary radius, since it

asymptotically vanishes provided that the solution has finite energy. The

same result as in ref. 10 was extended by F. Castella to initial data in L2 for

the repulsive and attractive cases but under the hypothesis of infinite

kinetic energy. These results show a ‘‘gap’’ in the theory of the asymptotic

behaviour in time of solutions to the SPS in the attractive case with finite

(positive or negative) energy.

From other point of view, in ref. 18 and 19, J. L. López and J. Soler

analyzed the asymptotic behaviour for the 3-D SP system proving that the

potential tV(tx, t) tends to the Coulomb potential V.(x)=
c

4p |x| for large

times. This type of behaviour is also found for finite time and |x|Q..

Motivated by this result and in order to gain some insight into the above

open problems we try to characterize an approximate solution kA by a

localized shape, with finite L2-norm and energy, and with spatial extension

R(t)2. Thus, we propose an easiest ansatz whose form is motivated by the

Hydrogen-like asymptotic behaviour of the exact problem at large distan-

ces and take into account the invariants of the SPS (see Section 2). Due to

the translational invariance of the Action functional associated to the SPS

we can, without loss of generality, set the approximate solution localized at

the origin of our coordinate axis, OxP(t)=0. Moreover, based on the

Galilean invariance of R(t) (Lemma 2.1), we can always choose our
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reference frame as following the motion of the wave packet, i.e. that ‘‘at

rest’’ where the mean momentum vanishes, OpP(t)=0. Since we have some

freedom to fix the phase of the wave function, we will take the initial con-

dition kA(x, 0) to be real. Then, the easiest ansatz suggested by the

Hydrogen-like asymptotic behaviour we can think of is of the form kA(x, t)=
A(t) e−a(t) re ib(t) r, where r=|x| and A(t), a(t) and b(t) are real functions.

Imposing to this ansatz the conservation laws of the SP solutions, we find

an ordinary differential equation for R(t). The following curves (Fig. 1)

represent the dependence of the energy E(R) over the Lieb stationary

energy EL, E(R)/EL, upon R/RL in both repulsive and attractive cases,

where RL is the extension associated with the Lieb stationary solution. This

figure shows that if the initial energy is positive E(0) > 0, the motion of

the system is unbounded for both repulsive and attractive cases. The curves

also give that the unbounded growth of the system is not possible when the

initial energy is negative due to the energy preservation. If we plot the

density as a function of time we see a localized solution whose width

slightly oscillates in time. We may call this a breathing mode. Note that the

results suggested by this ansatz agree with those of ref. 7 and 10 in the

repulsive case and with those of ref. 4 for the repulsive and attractive cases

with infinite positive energy. At large times, we have R(t) ’ t2/3. Thus, for

our approximate solution we obtain ||kA( · , t)||L6(R3) ’ t−2/3, bound which

differs from that given by Castella in ref. 4 in t−1/6 orders of magnitude.

Fig. 1. Dependence of the energy E(R) upon the extension R.
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The aim of this paper is to try to corroborate the qualitative results

suggested by the Fig. 1 with special attention on the attractive case with

finite energy whose asymptotic analysis in time have not been discussed in

the previous literature.

Let us summarize the techniques used through this paper as well as

how it is organized. Our analysis relies first on a variational approach

based on Noether’s theorem, which formally describes the connection

between invariance properties of the Action functional associated with the

Schrödinger–Poisson operator and the corresponding physical quantities

preserved through the temporal evolution, namely the motion invariants

(see, for instance, ref. 8). In particular, the total mass, linear and angular

momentum, total energy and boost operators contributing to the Schrö-

dinger–Poisson system are deduced to be time-preserved in Section 2. The

Poisson Bracket arguments allow to find that the invariants form a closed

algebra, isomorphic to the Lie algebra of the generators of the Galilei

group.

As a consequence of these preservation properties it is shown in

Section 3 that the system remains unaccelerated during the evolution, i.e.

the particle evolves with a constant velocity. This is in agreement with the

particle interpretation of the solution since the system is moving in the

absence of external forces. Also, a measure for the time variation of the

wave packet size is proved in terms of the linear momentum variance via

the derivation of a dispersive equation (see Eq. (27) below) in which the

total energy operator is also involved. Some consequences are also

extracted from this equation in the repulsive case.

In Section 4 we obtain optimal bounds on the kinetic energy in terms

of the energy associated to the Lieb stationary solution which allows to

deduce the asymptotic behaviour to the solutions of the SPS in the attrac-

tive case with positive energy. To do that the stationary Schrödinger–

Poisson system is considered by analyzing the variational approach given

by E. H. Lieb in ref. 16 and comparing the scaling properties of the solu-

tion and the energy with respect to the physical constants.

In Section 5, we study the analysis of stability of the Schrödinger–

Poisson system for slightly perturbed oscillatory solutions around an

equilibrium stationary solution. We introduce a Liapunov functional to

study this problem and also the stability is discussed in terms of the sign of

the relative frequencies of oscillations (linear stability).

Finally, Section 6 is devoted to the analysis of the attractive case with

negative energy. We prove rigorously the existence of a bifurcating branch

from the Lieb solution of breather mode solutions, i.e. changing size

oscillatory density functions. The result agrees with the oscillatory charac-

ter of solutions suggested in Fig. 1. The mathematical difficulty of the
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problem is that in the attractive case the energy functional is not convex.

The techniques are based on variational principles and in the use of the

rearrangements of the wave functions which are related to the Lieb16 tech-

niques to deduce the minimal energy solution and on the works of Berger2

about periodic solutions in dynamical systems.

Most of our presentation is done for the single state. It would be

interesting to extend the present result to the mixed case, but this will

require some additional effort which is beyond the purpose of the present

work.

A variational formulation of the time-independent Schrödinger–

Poisson problem was previously proposed by F. Nier in ref. 24 under quite

different motivations. In particular, he proves existence and uniqueness of

solutions to the Dirichlet problem in a bounded domain and also to the

whole space problem when a periodic potential is considered, by trans-

forming the Schrödinger–Poisson system into a minimization problem

through a variational framework.

2. A VARIATIONAL FORMULATION. PROPERTIES

In this section we set the fundamentals of our variational approach

and analyze the invariant action on the system of Galilei symmetry group,

consisting of space and time translations, rotations and Galilei transfor-

mations or changes of inertial reference frames. As a consequence, the

temporal invariance of the expected value of some related physical opera-

tors is obtained.

Assume that we are in the context of solutions k(x, t) ¥H1(R3) for

which the time integrals below make sense. Then, the Action functional

associated with the Schrödinger–Poisson system can be written as follows

S(k, k̄)=F
.

0
F
R
3 3i(k̄

“k

“t
−
(
2

2m
|Nxk|2−V |k|2+

1
2c
|NxV|24 d(x, t)

=F
.

0
F
R
3 3i(k̄

“k

“t
−
(
2

2m
|Nxk|2−

1
2
V |k|24 d(x, t). (5)

Then, taking into account the elliptic relation (4) connecting the

potential and the wave function, the Action functional takes the form

S(k, k̄)=F
.

0
F
R
3 3i(k̄(x, t)

“k

“t
(x, t)−

(
2

2m
|Nxk|2 (x, t)

−
c

8p
F
R
3

|k(x, t)|2 |k(xŒ, t)|2

|x−xŒ|
dxŒ4 d(x, t). (6)
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There exists a procedure for associating an energy equation with a

variational principle. Noether’s theorem (see e.g. refs. 8 and 9) shows that

there is a conservation (volume integrated) equation corresponding to any

continuous group of transformations for which the variational principle is

invariant. Thus, the search of all conserved quantities is reduced to study

the complete symmetry group of the Action functional. This is the real

strength of Noether’s theorem compared to the customary method consist-

ing of deriving integral constants of motion by multiplying the equation by

a suitable function and integrating. Although the application of Noether’s

theorem is well-known within Classical and Quantum Field Theory, we

review here the main aspects which are relevant for the SPS. Due to the

nonlinear character of the Schrödinger–Poisson operator, if we consider the

group of invariant linear and unitary transformations for k in the Action

associated with the SPS, this will be bounded by the maximal invariance

group for the free Schrödinger equation, see U. Niederer. (23)

2.1. Invariances of the Action functional

Let us study invariances of the Action S under some groups of trans-

formations and the corresponding preservation properties via Noether’s

theorem. The proof of the following results are derived from classical

calculations.

Lemma 2.1. The following invariances and conservation laws are

verified.

invariances conservation laws

change of phase total mass

k(x, t)Q e iak(x, t) M=F
R
3
|k(x, t)|2 dx

space translations linear momentum

k(x, t)Qk(x−a, t) P(t)=
(

i
F
R
3
k̄(x, t) Nxk(x, t) dx

rotations angular momentum operator

k(x, t)Qk(R−1x, t) J(t)=
(

i
F
R
3
k̄(x, t)(x N Nx) k(x, t) dx
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time translations total energy

k(x, t)Qk(x, t−y) E(t)=F
R
3 3
(
2

2m
|Nxk|2 (x, t)

+
c

8p
F
R
3

|k(x, t)|2 |k(xŒ, t)|2

|x−xŒ|
dxŒ4 dx

inertial frame change boost operator (generator of the pure

Galilei transformations)

k(x, t)Q e i/((mv · x−1/2mv
2t)k(x−vt, t) K(t)=t

(

i
F
R
3
k̄(x, t) Nxk(x, t) dx

−m F
R
3
k̄(x, t) xk(x, t) dx

All these symmetries are also symmetries for the free problem, i.e. the

case with V=0, and yield ten conserved quantities. However, there are two

other invariances associated with the free problem which are not sym-

metries for the interacting case, namely conformal transformations and

time-space dilatations (23) and which will be important in the rest of the paper.

Lemma 2.2. The Action functional S is not invariant under mass-

preserving time-space dilatations, i.e. under transformations of type

k(x, t)Qkl(x, t)=l3/2k(lx, lt) (7)

V(x, t)QVl(x, t)=lV(lx, lt), (8)

for every l> 0. In fact, we have that the Action S is mapped into Sl

under the transformation (7)–(8), where

Sl=F
.

0
F
R
3 3i(k̄l(x, t)

“kl

“t
(x, t)−l−1

(
2

2m
|Nxkl |2 (x, t)

−
c

8p
F
R
3

|kl(x, t)|2 |kl(xŒ, t)|2

|x−xŒ|
dxŒ4 d(x, t). (9)

Lemma 2.3. The Action functional S is not invariant under con-

formal transformations, i.e. under transformations of type

k(x, t)Qkt(x, t)=(1−tt)3/2 e−i(m |x|
2
t)/(2(1−tt))k 1

x
1−tt

,
t
1−tt2 (10)

V(x, t)QVt(x, t)=(1−tt)5 V 1
x
1−tt

,
t
1−tt2 , (11)
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for every t ¥ R. In fact, we have that the Action S is mapped into St

under the conformal transformation (10)–(11), where

St=F
.

0
F
R
3 3

1
(1−tt)5

i(k̄t(x, t)
“kt

“t
(x, t)

−
1

(1−tt)5
(
2

2m
|Nxkt |2 (x, t)

−
1

(1−tt)12
c

8p
F
R
3

|kt(x, t)|2 |kt(xŒ, t)|2

|x−xŒ|
dxŒ4 d(x, t)

+F
.

0
F
R
3

1
(1−tt)6 31

3
2
i(t+

(

2
mt2x2

1
1−tt

−
(
2

2
mt2x2

1
1−tt2 |kt |

2 (x, t)−i(tk̄t(x, t)(x ·Nx) kt(x, t)

+Re (i(2tk̄t(x, t)(x ·Nx) kt(x, t))4 d(x, t). (12)

The total energy preservation was formulated (in a weak sense) for mildH2-

solutions by R. Illner, P. F. Zweifel and H. Lange in ref. 10, Proposition

3.7. It is also remarkable that the pseudo-conformal conservation identity

(see ref. 10)

||(x+it Nx) k( · , t)||
2
L2(R3)+t

2 ||NxV( · , t)||
2
L2(R3)

=||xj||2L2(R3)+F
t

0
s ||NxV( · , s)||

2
L2(R3) ds. (13)

is still valid for weak L2-solutions, as proved by F. Castella, (4) in spite of

the kinetic energy of the particle ||Nxk( · , t)||
2
L2(R3) is not bounded, in that

case, for any time and the particle instantaneously goes to infinity.

In addition to the above mentioned continuous symmetries which yield

the Noether invariants, there are other discrete symmetries (15) such as

reflection symmetry, time reversal and charge conjugation (the latter

includes changing the sign of the particle mass, m, also). It is also

noteworthy that these invariance properties of the Action functional

together with the uniqueness of the solution could have powerful con-

sequences when regarding solutions corresponding to initial conditions

which are invariant under some subgroup of the group of invariant trans-

formations. We will illustrate this in the next section for the simple case of

a real initial condition.
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2.2. The Poisson Bracket Structure

It is interesting to realize that the SPS derived from the Action func-

tional in (6) admits a Poisson bracket structure. Poisson structures are very

well known in field theory, see ref. 25. The Poisson bracket of two func-

tionals of k and k̄, A and B is defined as

{A, B}=i F
R
3
(Ak̄(x, t)Bk(x, t)−Bk̄(x, t)Ak(x, t)) dx, (14)

where Bk(x, t) indicates the (functional) Frechet derivative of the functional

B with respect to k(x, t) and where we take the rule k(x, t)k(xŒ, t)=d(x−xŒ)
in a distributional sense. This definition is a simple generalization of the

classical mechanics analog (see ref. 8), but taking into account that the field

canonically conjugated to k(x, t) (which plays the role of a coordinate) is

ik̄(x, t). This Poisson bracket enjoys the properties of being i) bilinear in A
and B, ii) antisymmetric and iii) satisfying Jacobi’s identity

{{A, B}, C}+{{C,A}, B}+{{B, C},A}=0. (15)

For an arbitrary functional one has the derivation rule

i(
d
dt

A=i(
“A

“t
+{E,A}, (16)

where E is the energy functional. For the particular case of bilinear func-

tionals, which can be written as a scalar product A=Ok| OA |kP and B=
Ok| OB |kP with OA and OB being self-adjoint operators we have {A, B}=
Ok| [OA, OB] |kP, where [OA, OB]=OAOB−OBOA is the quantum

mechanical commutator and Ob1 | O |b2P means the matrix element

Ob1 | O |b2P=>R3 b̄1(Ob2) dx.
Then, the Poisson bracket structure of the Schrödinger–Poisson system

takes the form

Sk̄(x, t)=i( “tk(x, t)−Ek̄(x, t)=i( “tk(x, t)−{E, k(x, t)}=0. (17)

The complex conjugate equation is equivalent to this one since E[k, k̄]=
E[k̄, k].

A classical theorem of these Poisson structures is that if a functional

A does not depend explicitly on time, then A is a constant of motion if

and only if its Poisson bracket with the energy functional vanishes, i.e.

{E,A}=0. Moreover, if two functionals A and B are constants of

motion, then their Poisson bracket {A, B} is also a constant of motion, see
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ref. 13 and 25. As we have seen, there are eleven constants of motionM, E,

PF, JF, KF. Notice that besides the energy functional E all others are bilinears

in k and k̄. The non-vanishing Poisson brackets of these conserved quanti-

ties are

{Ki, Jj}=i(eijkKk, {E, Ki}=i(Pi,

{Pi, Jj}=i(eijkPk, {Pi, Kj}=i( dijM,

{Ji, Jj}=i(eijkJk,

where eijk and dij are the Levi–Civitta and the Kronecker coefficients,

respectively. Therefore, no new conserved quantities originated by Poisson

brackets exist. Then, we have shown the following result.

Proposition 2.1. The constants of motionM, E, PF, JF, KF of the SPS

form a closed algebra, isomorphic to the Lie algebra of the generators of

the Galilei group, with the norm functional M playing the role of the iner-

tial mass of the particle.

3. A DISPERSION EQUATION

In order to simplify the notation and from now on in the rest of the

paper let us normalize the Planck constant to the unity.

Let us establish the following notation for the expectation value of f

OfP(t)=Of(x, t), k(x, t)P=def F
R
3
k̄(x, t) f(x, t) k(x, t) dx, (18)

where f could be an integrable function f: R3×[0,.)QR j or an operator

acting on k(x, t). Two special examples are the first order moment of the

density (center of density), representing the expected value of the coordi-

nate defined by

OxP(t)=F
R
3
k̄(x, t) xk(x, t) dx (19)

and the expected value of the linear momentum operator (quantity of mean

modes)

P(t)=OpP(t) =def 7
1
i
Nx8 (t)=

1
i
F
R
3
k̄(x, t) Nxk(x, t) dx. (20)

In this section the calculations are done formally without taking care

of regularity assumptions (the operators x and p=i N are unbounded).
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However, it is not a problem at this point since the aim of the section is to

show how estimates can be derived algebraically from the variational

approach. The use of dilatation transformations is related to the Mourre

theory based on the dilatations generator for the linear Schrödinger equa-

tion (see ref. 5).

It is a classical result in Quantum Mechanics (Ehrenfest’s theorem),

which can be deduced through a direct computation using the Schrödinger

equation, the relationship

d
dt

OxP(t)=
1
m

OpP(t). (21)

Since the linear momentum is an invariant of motion (Noether’s theorem,

see Lemma 2.1) with respect to time, then the above equation (21) can be

explicitly solved. We have proved the following result

Lemma 3.4. The center of density has the following linear growth

in time

OxP(t)=
OpP(0)
m

t+OxP(0). (22)

This result states the simple fact that the extended solution k(x, t) repre-

sents a particle with internal structure which moves in the absence of

external forces. This equation is a simple consequence of the Galilean

invariance of the system stated in Lemma 2.1.

For the sake of simplicity in future calculations and as a direct way to

prove (21), we will use the classical bracket notation. Given two non-

commutative operators associated with some physical quantities, let us

denote by [ · , · ] the usual quantum Poisson’s bracket formalism defined

by [A, B]=i(AB−BA). Using the Hamiltonian operator associated

with the Schrödinger equation H=− 1
2m N

2
x+V=

1
2m p

2+V, we can easily

deduce

d
dt

OfP(t)=O[H, f]P(t)+7
“

“t
f8 (t). (23)

Then, taking into account the equalities

[p, x]=I3 and [H, x]=
p
m
, (24)
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it is straightforward to deduce (21), where I3 is the identity matrix in R3×3

and where the following property of Poisson’s brackets

[AB, C]=A[B, C]+[A, C] B (25)

is used to deduce the second relation in (24).

In the following result we shall derive an equation relating the position

and moment dispersions. A remarkable fact is that this equation is a dis-

tinctive feature of the Coulomb interaction, regardless of the quantum-

mechanical underlying dynamics. It can be checked that this equation is

also fulfilled for a system of classical charged particles or for its statistical

limit, like occurs in the context of Vlasov–Poisson system. A predecessor of

this equation was given by P. L. Lions and T. Paul in ref. 17 by means of

the Wigner formulation. In fact, this dispersive equation can be considered

as a direct derivation from the pseudoconformal law (13) studied in (10)

and (4) and obtained here in a different and simpler form and go further by

exploiting its consequences.

Let us denote by

R(t)2=(Dx)2 (t) =def Ox2P(t)−OxP2 (t) and (Dp)2 (t) =def Op2P(t)−OpP2 (t).
(26)

Lemma 3.5. The following equation connecting the position and

moment dispersions

d2

dt2
(Dx)2 (t)=

2
m 1E(t)−

1
2m

OpP2 (t)2+
1
m2
(Dp)2 (t) (27)

holds, E(t) being the energy operator defined in, Lemma 2.1.

Proof. We first find the equation for the time derivatives of the

second order moment of the density. Applying (23) with f=x2, we have

d
dt

Ox2P(t)=F
R
3
k̄(x, t)[H, x2] k(x, t) dx.

Using (25) and the homologous relation

[A, BC]=B[A, C]+[A, B] C, (28)
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we deduce

[p2, x2]=C
3

j=1
{pj[pj, x2]+[pj, x2] pj}=2(xp+px)

which implies, by using [H, x2]= 1
2m [p

2, x2],

d
dt

Ox2P(t)=
1
m

Oxp+pxP(t). (29)

Taking into account (23) and (29), we have for the second derivative

d2

dt2
Ox2P(t)=

1
m

O[H, xp+px]P(t).

From (24) and (28) we get [H, xp]=[H, px]=(1m p
2−x·NxV)(t). There-

fore,

d2

dt2
Ox2P(t)=

2
m 7

1
m
p2−x·NxV8 (t). (30)

In order to give a closed expression for (30) in terms of the first and second

order moments of momentum and density we evaluate Ox ·NxVP with the

help of (4) as follows

Ox ·NxVP(t)=F
R
3
k̄(x, t) x ·NxV(x, t) k(x, t) dx

=F
R
3
|k(x, t)|2 x ·Nx 1

c

4p
F
R
3

|k(xŒ, t)|2

|x−xŒ|
dxŒ2 dx

=−F
R
3
|k(x, t)|2 x 1

c

4p
F
R
3

x−xŒ
|x−xŒ|

|k(xŒ, t)|2 dxŒ2 dx,

that, due to the antisymmetry property of the kernel x x−xŒ
|x−xŒ|3

, gives

=−
c

8p
F
R
6

|k(x, t)|2 |k(xŒ, t)|2

|x−xŒ|
dxŒ dx.

Now, the definition of the total energy (Lemma 2.1) allows to write

Ox ·NxVP=
1
2m

F
R
3
Nxk̄(x, t) Nxk(x, t) dx−E(t)=

1
2m

Op2P(t)−E(t). (31)
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Hence, combining (30) and (31) we finally obtain

d2

dt2
Ox2P(t)=

2
m 3
1
2m

Op2P(t)+E(t)4 . (32)

Then, the announced result follows from (21) and (32). L

By easy calculations, the dispersion equation (27) gives

m
2
d2

dt2
Ox2P=EKIN+E(t), (33)

which will be useful later in Section 6.

Let us now prove that equation (27) is an invariant for the Schrö-

dinger–Poisson system. Define a Galilei transformation as in ref. 15

k(x, t)Q e−i(−mv · x+1/2 mv
2t)k(x−vt, t), v ¥ R3.

Lemma 3.6. (i) Thepositiondispersion (Dx)2(t) isaGalilei invariant.

(ii) The momentum dispersion (Dp)2(t) is also a Galilei invariant.

Proof. The first order moment of the density becomes

Ox, k(x−vt, t)P=F
R
3
k̄(x−vt, t) xk(x−vt, t) dx

=F
R
3
|k(x, t)|2 (x+vt) dx=OxP(t)+vt (34)

under Galilei transformations. In the same way, for the second order

moment of the density we have

Ox2, k(x−vt, t)P=O(x+vt)2P(t)=Ox2P(t)+v2t2+2vtOxP(t). (35)

Then, as a consequence of (34) and (35), the mean square deviation for the

coordinate (Dx)2(t) verifies

(Dx, k(x−vt, t))2=def Ox2, k(x−vt, t)P−Ox, k(x−vt, t)P2=(Dx)2 (t),

which gives its invariance under Galilei transformations.
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Analogously, concerning with the mean square deviation for the linear

momentum we can write

Op, k(x−vt, t)P=
1
i
F
R
3
(e−i(−mv · x+1/2 mv

2t)k(x−vt, t))

×Nx(e−i(−mv · x+1/2 mv
2t)k(x−vt, t)) dx,

where we have applied the fact that if (k(x, t), V(x, t)) is a solution to the

SPS, then the pair (exp{if(x, t)}k(x, t), V(x, t)) is also a solution for any

real function F. Then, the mass preservation property (Lemma 2.1) gives

Op, k(x−vt, t)P=OpP(t)+mv. (36)

A similar argument leads to

Op2, k(x−vt, t)P=Op2P(t)+(mv)2+2mvOpP(t). (37)

Hence, combining both equations (36) and (37) we deduce that the

momentum dispersion (Dp)2(t) also verifies

(Dp, k(x−vt))2=def Op2, k(x−vt, t)P−Op, k(x−vt, t)P2=(Dp)2 (t)

thus is a Galilei invariant. L

The above result can be generalized. In fact, all centered moments of

the form O(x−OxP)nP and O(p−OpP)nP are Galilei invariant.

Let us remark that the dispersion equation (27) can be also deduced as

a consequence of the stationary character of the Action functional under

some transformations. In particular, we have the following result.

Lemma 3.7. The variation of the Action functional S

(i) under dilatation transformations:

k(x, t)Qkl(t)(x, t)=l3/2(t) k(l(t) x, t)

V(x, t)QVl(t)(x, t)=l(t) V(l(t) x, t),
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(ii) under conformal transformations:

k(x, t)Qkt(x, t)=(1−tt)3/2 e−i
m |x|2 t
2(1−tt)k 1

x
1−tt

,
t
1−tt2

V(x, t)QVt(x, t)=(1−tt)5 V 1
x
1−tt

,
t
1−tt2 ,

implies the dispersion equation (27).

Proof. The dilatation k(x, t)Qkl(t)(x, t)=l3/2(t) k(l(t) x, t) provides

S(kl(t), k̄l(t))=F
.

0 3
3
2
ilŒ(t) 1

1
l(t)
−12+iO“tP(t)

−lŒ(t)
m
2
d
dt

Ox2P(t)−
1
2m
l2(t)Op2P(t)−

1
2
l(t)OVP(t)4 dt,

where we have used OxpP(t)=m
2
d
dt Ox

2P(t)+3
2 i as an easy consequence of

(29).

Then, minimizing this variation with respect to l(t) around l(t)=1 we

find

m
2
d2

dt2
Ox2P(t)=

1
m

Op2P(t)+
1
2
OVP(t)=

1
2m

Op2P(t)+E(t).

Subtracting from this formula the identity m
2
d2

dt2
OxP2(t)=1

m OpP
2(t), which is

a direct consequence of (21) and the preservation of the linear momentum,

we deduce the dispersion equation (27).

In a similar way, we can obtain (27) by using (10)– (11). L

A first consequence we can deduce from equation (27) is that for each

real initial condition associated with the Schrödinger–Poisson system there

corresponds linear momentum zero and an initial stationary dispersion. In

fact, if j is a real function we can write

d
dt

Ox2P(t):t=0=
1
m
1
i
F
R
3
{j(x ·Nx) j+j(Nx · x) j} dx.

Taking the conjugate complex we find

d
dt

Ox2P(t):t=0=−
d
dt

Ox2P(t):t=0S
d
dt

Ox2P(t):t=0=0.
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But, in this case, the moment is also zero because of

OpP(0)=OpP(t)=
1
i
F
R
3
j Nxj dx=

1
i
1
2
F
R
3
Nx(j2) dx=0,

which implies from (22) OxP(t)=OxP(0). In a similar way and using (27) we

can also prove that, for a real initial condition,

d
dt

Op2P(t):t=0=0,
d3

dt3
Ox2P(t):t=0=0.

In fact, these properties regarding vanishing values of integral quantities at

t=0 are a simple consequence of time reversal invariance, namely the

invariance of the Schrödinger–Poisson system under the transformation

k(x, t)Q k̄(x,−t), which means that if k(x, t) is a solution corresponding

to the initial condition j(x), then k̄(x,−t) is also a solution corresponding

to the complex conjugated initial condition j̄(x). If the initial condition is

real, then by uniqueness of the solution we must have k(x, t)=k̄(x,−t).
Thus, in particular |k(x, t)|2=|k(x,−t)|2 and, more generally, all bilinear

integral and real quantities such as OxnP(t) for all n, and OpnP(t) for even n
are even at time t, hence their derivatives of odd order identically vanish at

t=0. Likewise, OpnP(t) for odd n are odd in t and their even order deriva-

tives vanish.

For the repulsive case it is then a simple matter to recover (see ref. 7

and 10) from (27) or (33) by using that the total energy is always positive

the following result.

Proposition 3.2. In the repulsive case the dispersion is always a

convex function of time. From here it follows an increasing dispersion in

time, so that k(x, t) spreads out as time grows.

No concluding results can be obtained from (33) in the attractive case.

However under some hypothesis the same type of behaviour applies for the

attractive case with positive initial energy. This can be achieved by letting

Ox2P to become sufficiently small, since by the uncertainty relation

(Dx)2(t)(Dp)2(t) \ 9
4 the kinetic energy Op2/2mP becomes sufficiently large

so as to dominate over the potential energy −OVP/2. For negative initial

energy, however, we can only deduce that m
2
d2
2 Ox2P(t) > inf E+ 1

Ox2P(t)
9
8m

after an appropriate normalization.

Note that, since the energy functional takes its minimum at a negative

value in this case, nothing prevents in principle from a change of convexity

of the dispersion. Therefore, we can only obtain concluding results in the

repulsive case while in the attractive case the results are only partially
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satisfactory. However, Fig. 1 motivated us to improve the bounds for the

kinetic energy to try to corroborate its suggested behaviour for the

solutions.

4. BEHAVIOUR OF SOLUTIONS IN THE ATTRACTIVE CASE WITH

POSITIVE ENERGY

The aim of this Section is to prove that if the initial energy is positive

the system expands unboundedly. Let us first review some aspects concern-

ing with the stationary case. If we start from a time independent density,

we expect from the dispersion equation that at any time E+ 1
2m Op

2P=0,
thus the kinetic energy should become a constant of motion. A particular

kind of solution corresponding to constant density in time is of the form

k(x, t)=e−ietk(x), so that the Schrödinger–Poisson system reduces to the

time-independent Schrödinger equation

ek=−
1
2m
Dxk+Vk, lim

|x|Q.
k=0 (38)

coupled to Poisson’s equation (3). Clearly, if we take as initial condition a

function k(x) satisfying the previous set of equations, then the solution as a

function of time is represented by the function k(x, t). It is well-known that

this problem can be formulated in a variational context, namely the solu-

tion is an extremal of the energy functional. Indeed, E. Lieb (16) proved that

in the attractive case there is a unique L2 solution minimizing the energy

functional (referred to as Choquard’s energy functional), the ‘‘eigenvalue’’

eL, associated to the Lieb solution, being the corresponding Lagrange mul-

tiplier. Furthermore, this solution was found to be spherically symmetric.

Numerical investigation was also done to compute the numerical value to

some desired accuracy. Notice that the above problem (38) enjoys some

symmetries, namely invariance under phase transformations, space trans-

lations, rotations and boosts.

Some integral relations, usually called virial theorems, can be obtained

from the stationarity of the energy with respect to particular variations

upon k(x) and V(x). Multiplying the Schrödinger equation (38) by the

wave function associated to the minimal Lieb solution (kL(x), VL) and

integrating we get, for normalized states, eL=
1
2m Op

2PL+OVLPL. The sub-

script L stands for the corresponding average with respect to the wave

function kL(x). This yields

EL=
1
2m

Op2PL=
1
3
eL
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as long as the stationary potential and kinetic energy verify

ELKIN=−eL/3 and ELPOT=2eL/3. (39)

These relations are in fact necessary conditions for a solution to be a sta-

tionary one. Lieb’s minimal energy can be conveniently written in terms of

a positive dimensionless constant c, which can be evaluated numerically, as

EL=−cm 1
5c
64p2

2

. (40)

Another interesting aspect is to compare two problems with different

values of the parameters, namely (m, c) and (m0, c0). This yields certain

scaling relations which allow to compute all possible values (m, c) in terms

of some reference values (m0, c0). The best way to derive them is to consi-

der the energy functional E(m0, c0)[j] with minimum k0(x) and the energy

functional E(m, c)[j] with minimum k(x). We propose for the second

problem j(x)=l3/2k0(lx). Now, minimizing with respect to l we get

k(x)=1
cm
c0m02

3/2

k0 1
cm
c0m02

.

Hence,

E(c, m)=1
mc2

m0c
2
02
E(c0, m0) (41)

and a similar relation for the eigenvalue e(c, m), while for a time dependent

solution becomes

k(x, t)=1
cm
c0m02

3/2

k0 1
cm
c0m0

x,
c2m
c20m02

.

The equations (39) and (41) also hold for any stationary solution. This

relation will be applied later for k0=kL.

Then, let us first deduce some optimal bounds for the energies.

Proposition 4.3. The kinetic energy associated to the solutions of

the Schrödinger–Poisson system are bounded between the extremal optimal

values E±KIN given by

EpmKIN=−2EL 11−
E0
2EL
±=1−

E0
EL2
, (42)

where E0 is the initial energy and EL is the energy of the Lieb solution.
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Proof. Since the following estimates are valid for any time we drop

the explicit time-dependence of the wave function. It is known that the

interaction energy associated with mild solutions of the SPS can be

bounded in terms of the kinetic energy in the form

F
R
6

|k(x)|2 |k(xŒ)|2

|x−xŒ|
dxŒ dx [ C 1 FR

3
|Nk(x)|2 dx2

1/2

,

where C is a positive constant (see ref. 10). We optimize this bound by

minimizing the functional

F[k]=
F
R
3
|Nk(x)|2 dx

1 FR
6

|k(x)|2 |k(xŒ)|2

|x−xŒ|
dxŒ dx2

2
> 0

on L2(R3) under the restriction ||k||L2(R3)=1. Then, the Euler–Lagrange

equation associated with this functional reads

−Dk(x)

1 FR
6

|k(x)|2 |k(xŒ)|2

|x−xŒ|
dxŒ dx2

2

−
4 F

R
3

k(x) |k(xŒ)|2

|x−xŒ|
dxŒ

1FR
6

|k(x)|2 |k(xŒ)|2

|x−xŒ|
dxŒ dx2

3

F
R
3
|Nk(x)|2 dx−lk(x)=0.

This problem can be rewritten as

−
1
2m0
Dk0(x)+

c0

4p 1FR
3

|k0(xŒ)|2

|x−xŒ|
dxŒ2 k0(x)=e0k0(x), (43)

which is similar to the stationary SPS (38). Identifying the parameters we

have

F
R
6

|k0(x)|2 |k0(xŒ)|2

|x−xŒ|
dxŒ dx=2m0, (44)

−4
F
R
3
|Nk0(x)|2 dx

1 FR
6

|k0(x)|2 |k0(xŒ)|2

|x−xŒ|
dxŒ dx2

2

=
c0

4p
(45)
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and

l F
R
6

|k0(x)|2 |k0(xŒ)|2

|x−xŒ|
dxŒ dx=e0 — e(c0, m0).

Multiplying (43) by k̄0 and integrating over R3, we obtain

−3 min F[k]=−3F[k0]=l. (46)

Then, to determine l we can evaluate the potential and kinetic energy as

follows:

EPOT(c0, m0)=
c0

8p
F
R
6

|k0(x)|2 |k0(xŒ)|2

|x−xŒ|
dxŒ dx=

c0m0
4p
< 0

EKIN(c0, m0)=F
R
3

|Nk0(x)|2

2m0
dx=

−2p
m0c0

E2POT(c0, m0)=−
c0

8p
m0 > 0,

where we have used (45). On the other hand, by using the stationary rela-

tions given in (39) we find e0=3c0m0/8p and

l=
e0

2m0
=
3c0
16p
< 0. (47)

There only remains to calculate c0 from the scale parameters. For that,

using the scale relations (41) we have

e0=
3c0m0
8p
=
m0c

2
0

mc2
eL=−3c 1

5c0
64p2

2

m0,

where c is the smallest eigenvalue. This implies

c0=−
1
8p 1
64p
5 2

2 1
c
. (48)

Combining (46), (47) and (48) we obtain 2mc( 5c64p)
2 2EKIN \ E2POT, from

which, using (40), we deduce the bound

EPOT \−`−2EL `2EKIN. (49)

Since our minimum represents a stationary state, the total energy verifies

E0 =
def EKIN+EPOT \−cm 1

5c
64p2

2

— inf E=EL,
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which is precisely the estimate for Lieb’s solution (40). Now, using the

energy conservation property together with (49), we find the inequality

EKIN−`−2EL `2EKIN [ EKIN+EPOT=E0

which yields

E2KIN−2E0EKIN+E
2
0 [−4ELEKIN.

From this equation it is a simple matter to obtain (42) given in the Propo-

sition statement. The bound E \ EKIN−2`−EL E
1/2
KIN is sharp since

minimizing the left hand side of the above inequality with respect to EKIN
we obtain EKIN=−EL (virial theorem) and, hence, E=EL. L

Now, combining the estimate for the kinetic energy given in the above

Proposition together with the dispersive equation we find the announced

main result:

Theorem 4.1. Let j ¥H1(R3) be the initial real condition of the

SPS with a positive initial finite energy 0 < E0 <. and finite initial dis-

persion Ox2P(0) <.. Then, the system expands unboundedly for large

times and the dispersion Ox2P(t) behaves like O(t2).

Proof. To deduce our result, let us write the dispersive equation in

the form

m
2
d2

dt2
Ox2P=EKIN+E0

which implies by using (42) the following bounds

E−KIN+E0 [
m
2
d2

dt2
Ox2P [ E+KIN+E0.

Hence, if E0 > 0, both bounds are also positive which allows to find the

result by integrating twice in time the equation; the system expands as

Ox2P ’ t2. L

The above estimate is sharp also from the following point of view:

since the initial energy coincides with the Lieb infimum, E0=EL, then both

parts of the inequality vanish and Ox2P remains constant. The former

nested inequality is not very useful in the limit of large times in the attrac-

tive case, since the left hand side becomes negative, meaning that the

system cannot contract too quickly, but for some finite time, this bound
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becomes worse than Heisenberg’s uncertainty principle, Ox2POp2P \ 9/4, in

the center of mass system. In this case, the right hand side only says that

the system cannot expand faster than as predicted in the repulsive case.

Numerically we can obtain an approximation to the optimal constant

that minimize the estimation of the potential energy in terms of the kinetic

one, min F=5`2c /8=0.6588, thus

F
R
6

|k(x)|2 |k(xŒ)|2

|x−xŒ|
dxŒ dx [ 0.6588 1 FR

3
|Nk(x)|2 dx2

1/2

and the equality holds true for the Lieb solution.

5. STABILITY NEAR THE MINIMAL SOLUTION

The results in Fig. 1 suggest that under certain initial conditions of

negative energy in the attractive case the behaviour of the solution might

be oscillatory. In order to corroborate this property we will first try to

describe the stability of the solutions which are close to the minimal Lieb

stationary solution.

Let us first note that the energy acts like a Liapunov functional. In

fact, the energy E(t) plus the minimum of the energy |eL | at the Lieb sta-

tionary solution is a nonnegative definite functional whose derivative with

respect to the time variable is zero due to the energy preservation. As a

consequence, the free energy functional E(t)+|eL | is a Liapunov functional

(see ref. 14 for a related Liapunov functional in this context) and the Lieb

stationary solution is stable under small perturbations of the initial data in

H1 with respect to the minimal energy solution kL. Also note that the

asymptotic stability is not possible in this case due to the energy

preservation.

5.1. Linear stability

The aim of this paragraph is to reinforce the previous result of sta-

bility by proving the linear stability for which we will first analyze the sign

of the relative frequencies of oscillations through the expansion of the

Action functional near the Lieb stationary solution. The analysis below

rules out the possibility of having damped oscillations, i.e. eigenfrequencies

not being neither purely real (stable motion) nor purely imaginary (un-

stable motion). We do not consider 1+3+3+3=10 zero frequency modes

here, associated with the broken symmetries of the stationary solution,

namely, phase, translational, rotational and Galilean invariance. They do
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not correspond to intrinsic deformations of the stationary solution, but

rather to global transformations.

Let us study the stability of stationary solutions under ‘‘ small’’ (non-

zero mode) perturbations with respect to g(x, t) of type

k(x, t)=e−ieLt[kL(x)+g(x, t)]. (50)

Then, the idea is to expand S in the form

S(kL+g)=S(kL)+SŒ(kL) g+
1
2Sœ(kL)(g, g)+ · · · (51)

Since the Lieb solution kL is a stationary solution to the SPS, then the

linear term in an expansion of S around kL is zero. Let us calculate the

second order term. The second variation of the Action functional S is

given by

Sœ(kL)(g, g)=F
.

0
F
R
3
ḡ(x, t) 1i

“g

“t
(x, t)+eLg(x, t)+

1
2m
Dxg(x, t)

−
c

2p
F
R
3

|kL(xŒ)|2

|x−xŒ|
dxŒ g(x, t)) dx dt

−
c

8p
F
.

0

1
|x−xŒ|

2Re(kL(x) ḡ(x, t))

×2Re(kL(xŒ) ḡ(xŒ, t)) dxŒ dx dt.

The function g(x, t) is in general a complex function, and we may split it

into real and imaginary parts as follows

g(x, t)=Re g(x, t)+i Im g(x, t) — gR(x, t)+igI(x, t). (52)

To analyze the linear stability problem, the fact that the Lieb solution

provides a global minimum of the energy functional for real functions

proves essential. Note that our definition of energy, given in Lemma 2.1, is

slightly different since it holds for complex functions but it obviously

reduces to the real function case. All we want to prove in the following

paragraph is that if the functional for real functions is minimized by kL the

functional for complex functions is also minimized by the same kL. Indeed,

Lieb’s result E[k]/||k||L2 \ E[kL]/||kL ||L2 \ eL for any real k(x) implies in

particular that for any purely real perturbation gR(x) not being a zero

mode, one has E[kL+gR]/||kL+gR ||L2 > eL. In the limit of small pertur-

bation one gets that the second variation of the energy functional or, equiv-
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alently, the associated quadratic form which we label by the operator A
(defined below) is strictly larger than eL ||gR ||L2, namely

1
2
Eœ(kL)(gR, gR) —

1
2
OgR,AgRP

=
1
2m

F
R
3
(NgR)2 dx−

c

4p
F
R
3

kL(xŒ)2 gR(x)2

|x−xŒ|
dxŒ

−
c

2p
F
R
6

kL(x) gR(x) kL(xŒ) gR(xŒ)
|x−xŒ|

dxŒ dx

> eL F
R
3
gR(x)2 dx

for all gR. On the other hand, the second variation of the energy corres-

ponding to a purely imaginary function igI(x), which quadratic form is

labeled by the operator B (defined below) fulfills

1
2
Eœ(kL)(gI, gI) — OgI, BgIP=

1
2m

F
R
3
(NgI)2 dx−

c

4p
F
R
3

kL(xŒ)2 gI(x)2

|x−xŒ|
dxŒ

> eL F
R
3
gI(x)2 dx

since A−eL is positive definite and B−A is positive (in the attractive

case) as can be deduced by considering the real function f(x) — kL(x) gR(x)
and the convolution formula for the Coulomb energy functional

F
R
6

f(x) f(xŒ)
|x−xŒ|

dx dxŒ=−
1
2p2

F
R
3

|F(p)|2

p2
dp < 0,

where F(p)=F̄(−p)=>R3 e ip · x dx f(x) is the Fourier transformation of

f(x). Taking g=gR+igI both results combined imply that the second

variation of the energy functional for complex variations fulfills

1
2
Eœ(kL)(g, g) —

1
2
Og,AgP

=F
R
3

1
2m
|Ng(x)|2 dx−

c

4p
F
R
6

|kL(xŒ)|2 |g(x)|2

|x−xŒ|
dxŒ dx

+
c

8p
F
R
6

1
|x−xŒ|

2 Re(kL(x) ḡ(x, t))

×2Re(kL(xŒ) ḡ(xŒ, t)) dxŒ dx

=
1
2
(Eœ(kL(gI, gI)+Eœ(kL(gR, gR)) > eL F

R
3
|g(x)|2 dx,
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where we have denoted the complex extension of the operator A by the

same symbol. Moreover, the second variation of the Action functional can

be expressed in terms of the second variation of the energy functional as

follows

Sœ(kL)(g, g)=F
.

0
F
R
3
ḡ(x, t) 1i

“g

“t
(x, t)+eLg(x, t)2 dt− F

.

0
Og,AgP dt.

If we minimize this second variation with respect to the perturbation g(x, t)
and its complex conjugate ḡ(x, t) independently we obtain the linear sta-

bility equations for ḡ(x, t) and g(x, t) respectively. In operator notation, the

latter equation reads

i
“n
“t
+eLg=Ag

for the complex g. Expressing this function into real and imaginary parts,

g=gR+igI, this equation splits into two real equations,

“gR

“t
+eLgI=BgI,

−
“gI

“t
+eLgR=AgR.

To solve the time dependence of this equation, let us propose as a solution

the harmonic ansatz

gR(x, t)=a(x) e−iwt+ā(x) e iw̄t, gI(x, t)=b(x) e−iwt+b̄(x) e iw̄t

yielding, in an obvious operator notation,

iwb=(A−eL) a, −iwa=(B−eL) b (53)

which corresponds to a generalized eigenvalue problem for the vector-

function (a, b). Since the operators A−eL and B−eL are hermitian and

positive definite we can combine the equations (53) to obtain

w2Oa, (B−eL)−1 aP=Oa, (A−eL) aP (54)
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which gives w2> 0 and, hence, w is real. Note that B−eL is in general an

unbounded operator. However, in the context of H1 solutions preserving

energy the operator becomes bounded and (54) makes sense for the

generalized eigen-solutions of (53).

Then, we have proved the following result:

Theorem 5.2. The solutions of the SPS which are small perturba-

tions except for those associated with broken symmetries of the stationary

solution, namely, phase, translational, rotational and Galilean invariance,

of the stationary Lieb solution are linearly stable in the topology of L..

6. EXISTENCE OF BREATHERS IN THE ATTRACTIVE CASE WITH

NEGATIVE ENERGY

In this Section we will prove for negative energy the existence near the

Lieb minimal solution of a bifurcation branch of periodic solutions

(breathing modes). If we look for periodic solutions to the Schrödinger–

Poisson problem, the natural constraint appears making the change of

variables t=ls in the Schrödinger equation which can be then written as

il
“k

“s
=−

1
2m
Dk+Vk (55)

Then, seeking for 2p periodic solution in s correspond to 2pl solutions in t.
In this way l measures the periodicity of the solutions to the system.

Consider the isoperimetric variational problem consisting in minimiz-

ing the energy functional

E=F
2p

0
F
R
3 1
1
2m
|Nk(x, s)|2−1 FR

3

|k(xŒ, s)|2

4p |x−xŒ|
dxŒ2 |k(x, s)|

2

2 dx ds (56)

over the constraints

S=3F
2p

0
F
R
3 1
i
2 1k̄

“k

“s
−k
“k̄

“s2+
1
2m
|Nk(x, s)|2

−1FR
3

|k(xŒ, s)|2

8p |x−xŒ|
dxŒ2 |k(x, s)|

2

2 dx ds=
8
3
p(eL+R), 0 < R< |eL |;

F
2p

0
(−Dkk̄+Dk̄k) ds=04 . (57)

The idea is that in this variational principle the period l appear as a

Lagrange multiplier and the possible solutions of the isoperimetric varia-
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tional system lead to a non-constant periodic solution which has eigenvalue

eL+R, with R> 0. The solutions will belong to a subspace of the Sobolev

space H1(0, 2p; H2(R3)) of 2p periodic functions. The possible periodicity

will appear on the density function and not over the wave function via the

continuity equation

il
“ |k|2

“s
=
1
2m
(−Dkk̄+Dk̄k).

Let us first see that the second constraint, which gives the periodicity

of the density, does not affect to the form of the associated Euler–Lagrange

equation.

Lemma 6.8. The constraint

F
2p

0
(−Dkk̄+Dk̄k) ds=0 (58)

does not contribute with any tern to the Euler–Lagrange equation associ-

ated to the isoperimetric variational problem which has the form (55).

Proof. The Lagrange multiplier associated to the constraint (58)

depends on x and provides the following term in the extended functional

associated to the isoperimetric problem (56)–(57)

F
2p

0
F
R
3
b(x)(−Dkk̄+Dk̄k)(x, s) dx ds

which can be written after integrating by parts as follows

F
2p

0
F
R
3
Nb(x) Q(x, s) dx ds, (59)

where

Q(x, s)=(Nkk̄−Nk̄k)(x, s). (60)

On the other hand, the variation of the isoperimetric variational problem

with respect to k̄ and with respect to k provides the equations

il
“k

“s
=−

1
2m
Dk+Vk+b Dk−D(bk) (61)

−il
“k̄

“s
=−

1
2m
Dk̄+Vk̄−b Dk̄+D(bk̄). (62)
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Then, multiplying the first equation by k̄ and the second one by k and

adding them we have

il
“ |k|2

“s
=
1
2m
(−Dkk̄+Dk̄k)−2Nb N |k|2−2Db |k|2.

Now, integrating over (0, 2p)×R3 and taking into account the constraints

we find

0=F
2p

0
F
R
3
(Nb2 N |k|2+2Dbb |k|2) dx ds=−F

2p

0
F
R
3
|Nb|2 |k|2 dx ds,

which implies that Nb=0 and, therefore, the term (59) in the extended

functional associated to the isoperimetric problem does not contribute to

the corresponding Euler–Lagrange equation that takes the form (55).

Lemma 6.9. The Lagrange multipliers l and a associated with the

first constant in Sigma ans with ||k||L2 [ 1 satisfy

1
4
3
(eL+R)−

1
2p

F
2p

0
E(s) ds2 l=

1−l
2p

F
2p

0
Q(s) ds−a ||k||L2, (63)

where

Q=F
R
3 1
1
2m
|Nk|2+V |k|22 dx. (64)

Proof. From the Euler–Lagrange equations associated to k and k̄ we

obtain

il 1
“k

“s
k̄−
“k̄

“s
k2+2a |k|

2=(1−l) 1−
1
m
(Dkk̄+Dk̄k)+2V |k|22 .

Integrating by parts over (0, 2p)×R3 we deduce

il F
2p

0
F
R
3 1
“k

“s
k̄−
“k̄

“s
k2 dx ds+4pa ||k||

2
L2(R3)=2(1−l) F

2p

0
Q(s) ds,

from which we have the result. L

Denote by H the closed convex set belongs to the Hilbert space

H1(0, 2p; H2(R3)):

H={k ¥H1(0, 2p; H2(R3)) such that ||k||L2 [ 1}.
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Lemma 6.10. Let k ¥H1(0, 2p; H2(R3)) such that ||k||L2 [ 1 and

such that k is a minimum of (56). Then, ||k||L2=1.

Proof. The proof consists in assuming that ||k||L2=s< 1 and letting

f=s−1k. Then, it is easy to deduce that E(f) < s−2E(k) in contradiction

with the fact that k is the minimum of (56). L

We now investigate the functionals that define the set S.

Lemma 6.11. The defining functionals of S are continuous with

respect to the weak convergence in H.

Proof. Let {kj} be a sequence weakly convergent to k in H. Then,

writing

i
2
F
2p

0
F
R
3 13k̄j

“kj

“s
−kj

“k̄j

“s 4−3k̄
“k

“s
−k
“k̄

“s42 dx ds

=
i
2
F
2p

0
F
R
3 3(k̄j−k̄)

“kj

“s
+k̄ 1

“kj

“s
−
“k

“s2

+k 1
“k̄

“s
−
“k̄j

“s 2+(k−kj)
“k̄j

“s 4 dx ds

and taking into account the duality in L2, we deduce the required con-

tinuity for the first functional in S. Note that we have strongly used the

convergence of the terms involving in the quadratic expressions by means

of the compactness of Sobolev embedding on compact domains. Similarly,

for the second constraint in S we operate in a weak formulation in the

space variable for the functional

F
2p

0
F
R
3
(−Dkk̄+Dk̄k) F dx ds, -F ¥ C.0 (R

3). L

In order to prove that the isoperimetric problem has a minimum, let us

introduce some necessary tools. Consider the space of the symmetric

decreasing functions

S={f : R3Q [0,.] such that f(x) [ f(y) if |x| \ |y|}

and let

SŒ={f: R3Q [0,.] such that f(x−v)=g(x) a.e.

for some v ¥ R3 and g ¥ S}
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be the translates a.e of functions in S. If q is the characteristic function of a

measurable set in R3, q will denote

q(x)=3
1 if 4p |x|3/3 [ ||q||L1

0 otherwise.

Clearly q* ¥ S and ||q||L1=||q*||L1. Given f: R3Q [0,.], let qfa(x)=1 if

f(x) \ a, qfa(x)=0 otherwise. Then f(x)=>.0 qfa(x) da, and we define its

decreasing rearrangement

f*(x) =def F
.

0
(qfa)* (x) da. (65)

Clearly f* ¥ S and is equimeasurable with f.

In our context, let us first note that a solution of the isoperimetric

variational problem (56)–(57) is invariant under change of phase of type

e−i2p(eL+R) tk(t, x). Then, it will be important that our minimizing solution

verifies this property. Also, we will deal with time-depending complex

valuated functions which requires the following definition of symmetric

decreasing rearrangement of k: R3×R+QC

k* =def |k|*, (66)

where the rearrangement is taken in the space variable for every t ¥ R+

fixed, and it is defined except for a multiplier change of phase e−i2p(eL+R) t on

k. Then, we define the space

SeL+R={e
−i(eL+R) tk(t, x), with k ¥H 5 S}, (67)

where e−i(eL+R) t |k(t, x)|* belongs.

The next result relates the energy of a wave function k with those of

its rearrangement k*. The proof is based on the properties of the sym-

metric decreasing rearrangement functions and on the Riesz inequality, see

ref. 16.

Lemma 6.12. Assume that k ¥ L.(0,.; H1(R3)). Then, the follow-

ing assertions are verified

1. If |k| ¨ SŒ, then

F
R
3 1FR

3

|k(xŒ, s)|2

4p |x−xŒ|
dxŒ2 |k(x, s)|

2 dx

< F
R
3 1 FR

3

|k(xŒ, s)|2

4p |x−xŒ|
dxŒ2 |k(x, s)|

2 dx. (68)
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2. If k( · , s) ¥H2(R3), then k( · , s) ¥H2(R3) and

F
R
3
|Nk(x, s)|2 dx \ F

R
3
|Nk*(x, s)|2 dx. (69)

Let us now establish the existence of a minimizing sequence of symmetric

decreasing rearrangement wave functions. To do that, let us consider the

extended energy functional

Ẽ=F
2p

0
F
R
3 31
1
2m
|Nk(x, s)|2−1 FR

3

|k(xŒ, s)|2

4p |x−xŒ|
dxŒ2 |k(x, s)|

2

2

−l
i
2 1k̄

“k

“s
−k
“k̄

“s2−b(x)(−Dkk̄+Dk̄k)4 dx ds. (70)

Lemma 6.13. i) There exists a minimizing sequence of symmetric

decreasing functions {kj}j ¥ N … SeL+R for Ẽ.

ii) If k ¥ SeL+R is a solution of the isoperimetric variational problem,

then k ¥ SŒ.

Proof. Let {kj}j ¥ N …H a minimizing sequence for the isoperimetric

problem. To deduce i), we replace kj by kg
j , use Lemmas 6.10 and 6.12, the

equality ||kj( · , s)||L2=||k
g
j ( · , s)||L2 and the fact that kj is a real function

except for a phase factor of type e−i(eL+R) s which implies that the two last

terms in Ẽ are zero to an additive term for the first one which is p(eL+R)
in agreement with the first constraint in S.

ii) follows from the first part of Lemma 6.12. L

The following Lemma gives us the necessary a priori estimates to deal

with the minimizing sequence.

Lemma 6.14. The functions k that minimize the functional E are at

least H1(R3) functions for every t ¥ R+.

Proof. It is a direct consequence of the facts that the energy is finite

and bounded from below by the energy associated to the Lieb minimal

solution and that the potential energy can be bounded in terms of the
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kinetic energy (as it has been obtained in an optimal way for the attractive

case in Section 6) for example by using the bounds

F
R
3 1FR

3

|k(xŒ, s)|2

4p |x−xŒ|
dxŒ2 |k(x, s)|

2 dx

[ ||n( · , t)||L1(R3) (cM1 ||n( · , t)||L1(R3)+cM2 ||n( · , t)||L3(R3))

[ ||n( · , t)||L1(R3) (cM1 ||n( · , t)||L1(R3)+cscM2 ||Nk( · , t)||L2(R3)),

where cM1 and cM2 are constants depending on the integral of the kernel

|x|−1 inside and outside the ball of center 0 and radius M respectively, and

cs is the Sobolev constant associated to the injection H1 … L6 in R3. Then,

we can choose M such that cScM2 < 1 which leads to the announced

bound. L

We now give the proof of the existence of a minimum in SeL+R which is

basically a consequence of the previous Lemmas and of the Lieb ideas (16).

Theorem 6.3. The isoperimetric variational problem has a solution

in SeL+R.

Proof. Let kj ¥ SeL+R be a minimizing sequence for the isoperimetric

variational problem constructed as in Lemma 6.13. By Lemma 6.14

||Nkj( · , s)||L2 is bounded from which we deduce by the Banach–Alaoglu

theorem the existence of a H1-weakly convergent subsequence. If k is the

weak limit then

||k||L2 [ 1 and lim inf
jQ.

F
R
3
|Nkj(x, s)|2 dx \ F

R
3
|Nk(x, s)|2 dx.

Let nj(x, s)=|kj(x, s)|2 ¥ S. We will also denote by n(|x|, s) the density

for spherically symmetric functions. By Lemma 6.14 nj(x, s) ¥ L3(R3).
Then, for anyM \ 0 we have

nj(M, s) 4pM3/3 [ 4p F
M

0
nj(s, s) s2 ds [ ||nj( · , s)||L1(R3) [ 1

n3j(M, s) 4pM
3/3 [ C.

Thus nj(M, s) < f(M) for s ¥ R+, where f(r)=Ar−1, for r [ 1 and f(r)=
Ar−3, for r \ 1, and A is an upper bound of the previous constants.

We also have a uniform L1 estimate of the gradients of the density

which is again a consequence of the boundedness of Nkj( · , s) in L2(R3).
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Then, as a consequence of the Helly theorem, we can deduce that nj(r, s)Q
n(r, s) [ f(r) point-wise for r > 0. We deduce that n=|k|2 by using that

kjQk weak in L2 and |kj | [ f1/2 ¥ L
2
loc.

Since njQn=|k|2 point-wise, and n [ f, the dominated convergence

theorem assure us that

F
R
6

|kj(xŒ, s)|2

4p |x−xŒ|
|kj(x, s)|2 d(xŒ, x)Q F

R
6

|k(xŒ, s)|2

4p |x−xŒ|
|k(x, s)|2 d(xŒ, x)

provided that

F
R
3 1 FR

3

f(|xŒ|)
4p |x−xŒ|

dxŒ2 f(|x|) dx <..

Combining the above estimates we have E=lim infjQ.E(kj) \ E(k). Hence,

k is a minimum for E. L

Let us now analyze some properties of the minimizing function k.

Theorem 6.4. 1. If k ¥H is an infimum of the isoperimetric

variational problem, then k satisfies

il
“k

“s
=−

1
2m
Dk+Vk, (71)

DV=|k|2. (72)

2. The solution of the isoperimetric problem given in Theorem 6.3

takes the form e−i(eL+R) sk(x), with k ¥ S and verifies

(eL+R) k=−
1
2m
Dk+Vk. (73)

Proof. The first assertion is a consequence of the fact that the

minimum of the isoperimetric variational problem (56)–(57) verifies the

associated Euler–Lagrange equation.

The second assertion can be deduced from the fact that the solution

constructed in Theorem 6.3 must be of the type e−i(eL+R) sk(x, s), where

k(x, s) ¥ S verifies

(l(eL+R)+a) k=(1−l) 1−
1
2m
Dk+Vk2−il

“k

“s
. (74)
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from this equation we deduce (multiplying by k̄) that k does not depend on

t. Using now the first assertion of this theorem and (63)–(64) we obtain

Qk=−
1
2m
Dk+Vk.

From the relation between Q and E, Q=3E, we deduce taht Q=eL+R.

Finally, since eL+R< 0, then k ¥ C.(R3) and goes to zero at infinity (see

ref. 16), and hence e−i(eL+R) sk(x) is a classical solution of (74). L

The above Lemmas allow to establish the following result.

Theorem 6.5. In the attractive case with negative energy there

exists a unaparametric (0 < R< |eL |) bifurcation branch of periodic solu-

tions (breathing modes) from the Lieb solution.

Remark. On the commensurability condition for periodic solutions and
the relevance of Theorem 6.5: In classical mechanics it is well known (Poin-

caré’s theorem) that a sufficient condition for a Hamiltonian system to

preserve periodic motion under small nonlinear perturbations of the initial

data is that the frequencies of the unperturbed system be incommensurable,

i.e. their ratios should not be integer numbers. This condition is actually

not necessary for a restricted class of perturbations and in particular to

purely perturbed initial data without changing the Hamiltonian functional

(see ref. 2), but it may nevertheless be verified in a system with a finite

number of degrees of freedom. Thus, one can use the Poincaré theorem to

prove, but not to disprove periodic motion under small perturbations. For

a system with ‘‘infinite’’ degrees of freedom, like a partial differential

equation, the commensurability condition may actually be difficult to

check, since one is searching for a very specific spectral information on a

quadratic form defined on a Hilbert space. Actually, if the quadratic form

turns out to have a continuous spectrum it is most likely that the in-

commensurability condition is not met. The strength of our Theorem 6.5 is

that due to convexification properties, through the rearrangement, of the

energy functional it is really not necessary to analyze the spectrum of the

second variation around the Lieb’s solution.
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